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Chaotic and periodic motions of a cyclic bus induced by speedup

Takashi Nagatani*
Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 3 June 2002; published 9 October 2002!

We study the effect of speedup on the dynamical behavior of a single cyclic bus in a bus system with many
bus stops. We present a nonlinear-map model of a cyclic bus to take into account the speedup. When the cyclic
bus is delayed, the bus speeds up to retrieve the delay. It is found that the cyclic bus exhibits chaotic motion
with increasing speedup. The chaotic motion depends on both speedup and the number of bus stops. Also, it is
shown that the dynamical transition between the chaotic and periodic motions occurs with the increase of bus
stops. The dependence of the recurrence time~one period! and Liapunov exponent on both speedup and the
number of bus stops is calculated for distinct dynamic states. It is shown that the speedup has a significant
effect on the bus motion. For a piecewise linear-map model, the cyclic bus does not exhibit the chaotic motion
but a complex oscillatory motion with multiple periods occurs.
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I. INTRODUCTION

Recently, transportation problems have attracted much
tention in the field of nonequilibrium statistical mechani
@1–4#. The jamming transitions of traffic flow have bee
investigated by using various models@5–15#. The dynamical
phase transitions are very much similar to the conventio
phase transitions and critical phenomena even if the sys
is far from equilibrium@9#.

Very recently, bus route models with multiple buses ha
been formulated by models similar to the traffic flow@16–
21#. It has been found that the bunching transition betwe
an inhomogeneous jammed phase and a homogeneous
occurs with increasing buses. The bunching transition is d
nitely different from the jamming transitions of traffic flow

In the system of a single cyclic bus on a circular rou
with many bus stops, a bus interacts with passengers wa
at bus stops@22#. With the increase of awaiting passengers
bus stops, a bus slows down, since it takes more time
awaiting passengers to board the bus. Then, the recurr
time ~one period! converges or diverges with the increase
rotations. The cyclic bus exhibits a dynamical transition b
tween the delay and schedule-time phases. The interac
between buses does not exist in the single-cyclic-bus p
lem but the dynamical phase transition occurs. The de
transition depends on the number of bus stops, the bus sp
and the number of awaiting passengers.

If the cyclic bus slows down, the bus will speed up
order to operate it on a schedule time. The operator may
able to overcome the bus delay by the speeding up. It is l
known how the speedup affects the bus behavior. The
behavior is governed by the dynamics of nonlinear map@23#.
The delay transition is determined by the properties of
attractors. The bus exhibits such complex behaviors as
otic and multiple periodic motions by the variation of th
speedup and the number of bus stops.

In this paper, we study the dynamical behavior of t
cyclic bus induced by the speedup when the bus slows do
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We present the nonlinear-map model to describe the bus
namics. We investigate the dynamics of the nonlinear m
We show that the dynamical transitions to complex mot
occur by changing the speedup and the number of bus st
We calculate the Liapunov exponent for various dynami
states. We show that chaotic motion occurs with the incre
of speedup.

II. MODEL

We present the model of a cyclic bus on a circular rou
There areM bus stops on the circular route. A cyclic bu
starts at bus stopm51 and moves around the route. The b
always stops at all the bus stops. If the recurrence time~one
period! is less than the prescribed limit, the bus moves w
a regular speed. When the recurrence time is larger than
prescribed limit, the bus speeds up and moves with hig
speed. The model is defined on a finite one-dimensional
tice with a periodic boundary condition. Each lattice site
labeled by a numberm running from 1 toM. A site represents
a bus stop. The distance between a bus stopm21 and its
next bus stopm is defined byLm . The average speed of th
bus between a bus stop and its next bus stop at rotationn is
defined byV(m,n). The arrival timet(m,n11) at bus stop
m at the (n11)th rotation is given by the summation of th
stopping time~for new passengers to board the bus! and the
moving time between a bus stop and the next bus stop o
the bus stopsM. One obtains the following equation:

t~m,n11!5t~m,n!1 (
l 51

m21

F„Dt~ l ,n11!…1 (
l 51

m21
Ll

V~ l ,n11!

1 (
l 5m

M

F„Dt~ l ,n!…1 (
l 5m

M
Ll

V~ l ,n!
, ~1!

where the functionF is the stopping time at a bus stop fo
new passengers to board the bus and the recurrence
Dt(m,n) at bus stopm at rotationn is defined byDt(m,n)
5t(m,n)2t(m,n21).
©2002 The American Physical Society03-1
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The awaiting passengers at a bus stop increase with
recurrence time. The number of awaiting passengers at
stop m at thenth rotation is proportional to the recurrenc
time Dt(m,n). m is the rate of passengers arriving at the b
stop, somDt(m,n) is the number of passengers that ha
arrived since the bus left the stop. The parameterk is the
time it takes one passenger to board the bus, and
kmDt(m,n) is the amount of time needed to board all t
passengers. The boarding time increases with the increa
awaiting passengers.

However, when the awaiting passengers at a bus stop
crease, the passengers form a queue. Then, in additio
boarding timekmDt(m,n), one should take into account th
time it takes one passenger to move from a position in
queue to the entrance of the bus. The moving time is gi
by x/nq , wherex is the position of passenger in the que
andnq is the mean velocity of passenger. If the length of t
queue isLq , the moving time is given byLq

2/2nq . Since the
length of the queue is proportional to the number of await
passengers, the moving time is proportional to the squar
the recurrence time,@Dt(m,n)#2. Therefore, the stopping
time for new passengers to board the bus is given
F„Dt(m,n)…5kmDt(m,n)1@zmDt(m,n)#2/2nq , where z
is the space between passengers in the queue.

Generally, awaiting passengers at a bus stop interact
other and the human behavior will become more comp
than the above. We assume that the boarding time is pro
tional to the power of the number of awaiting passenger

F„Dt~m,n!…5g0Dt~m,n!a, ~2!

whereg0 is the coefficient of proportionality and 1<a<2.
On dividing time by the characteristic timeL/V0 , one ob-
tainsM simultaneous equations for the dimensionless rec
rence time:

DT~m,n11!5 (
l 51

m21

gDT~ l ,n11!a1(
l 51

M

gDT~ l ,n!a

1
V0

V~n!
, ~3!

where DT(m,n)5V0Dt(m,n)/L, g5g0(V0 /L)12a, route
lengthL5( l 51

M Ll , andV(n)5(( l 51
M V( l ,n))/M is the aver-

age velocity over a cycle.
We approximate Eq.~3! by a simple nonlinear map. Th

recurrence timeDT(m,n) at bus stopm is replaced by an
effective ~or mean! recurrence timeDT(n). The M simulta-
neous equations reduce to a nonlinear equation. One ob
the following nonlinear map of a single variable:

DT~n11!5MgDT~n!a1V0 /V~n!. ~4!

Map ~4! presents a good approximation for Eq.~3! @22#.
Figure 1 shows the plots of map~4! for ~a! n5V(n)/V0
51.0 and~b! n5V(n)/V052.0, wherea52.0,g50.02, and
M515. Map~a! has no fixed points. Map~b! has two fixed
points: 0.613 and 2.72. The fixed point 0.613 is stable
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the fixed point 2.72 is unstable. The basin of attraction
the stable fixed point is given byDT(0),2.72.

If the recurrence time is larger than the prescribed lim
Tlimit , the bus moves with the high speedn2 . Otherwise, the
bus moves with the low speedn1 (n1,n2). The following
map is obtained:

FIG. 1. Plots of map~4! for ~a! n5V(n)/V051.0 and~b! n
5V(n)/V0520, wherea52.0, g50.02, andM515. Map~a! has
no fixed points. Map~b! has two fixed points: 0.613 and 2.72.~c!
Plot of Eqs. ~5! and ~6! for n151.0 and n252.0, whereTlimit

52.0. The map has two unstable fixed points: 2.0 and 2.72.
3-2
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DT~n11!5MgDT~n!a11/n1 when DT~n!<Tlimit ,
~5!

DT~n11!5MgDT~n!a11/n2 when DT~n!.Tlimit .
~6!

Figure 1~c! shows the plot of Eqs.~5! and ~6! for n151.0
and n252.0, whereTlimit52.0, a52.0, g50.02, andM
515. The map has two unstable fixed points: 2.0 and 2
The basin of attraction for the fixed point 2.0 agrees nea
with that of map~b! but the dynamics is definitely differen
from map~b!. It will be expected that the bus behavior e
hibits chaotic or periodic motions near the fixed point 2.0

The case ofa51.0 presents the piecewise linear m
@23#. First, we consider the piecewise nonlinear map ofa
52.0, and then the piecewise linear map ofa51.0.

III. CHAOTIC AND PERIODIC MOTIONS

We study the bus behavior by iterations of Eqs.~5! and
~6!. Figure 2 shows the plots of the recurrence timeDT(n)
against rotation numbern for initial values ranging over 0
,DT(0)<3.0, whereTlimit52.0, a52.0, g50.02, andM
515. The diagrams~a!–~c! indicate, respectively, the flow in
the parameter space„n,DT(n)… for the maps of Figs. 1~a!,
1~b!, and 1~c!. For the map of Fig. 1~a!, the recurrence time
DT(n) diverges with the increase of rotationn even if the
bus starts from any initial value. The bus delays more a
more. For the map of Fig. 1~b!, when the initial valueDT(0)
is less than the unstable fixed point, the recurrence t
DT(n) converges to the stable fixed point 0.613 with t
increase of rotationn. Otherwise, the recurrence time d
verges. ForDT(0),2.72, the bus moves with a consta
period, i.e., on the scheduled time. ForDT(0).2.72, the bus
delays more and more. Therefore, the dynamical transi
between the delay and schedule-time phases occur
DT(0)52.72. For the map of Fig. 1~c!, the recurrence time
exhibits the irregular behavior or diverges with the increa
of rotationn.

We calculate the variation of the recurrence time by
increase of rotation to study the dynamical transitions to
irregular motions. Figure 3~a! shows the plot of the values o
recurrence timeDT(n) against the high speedn2 from suf-
ficiently large rotation,n5100 to n5300, when DT(0)
52.0, wheren151.0, Tlimit52.0, a52.0, g50.02, andM
515. Figure 3~b! shows an enlargement Fig. 3~a! for n2
51.5– 1.9. If the high speedn2 is less than 1.33, the recu
rence time diverges with increasing rotationn. When high
speedn2 is higher than 1.33, the recurrence time takes
regular values. The dynamical transition from the diverge
to the irregular motion occurs at the critical pointn2,c
51.33. The critical point is given by such a point that t
value of recurrence time~6! at DT(n)5Tlimit52.0 for the
high speed equalsTlimit52.0 @see Fig. 1~c!#:

DTlimit5MgDTlimit
a11/n2 . ~7!

From Eq. ~7!, one obtainsn2,c51.33 for a52.0, g50.02,
andM515. This value is consistent with that obtained fro
04610
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the iteration. The maximum and minimum valuesDTmax and
DTmin of the recurrence time are given, respectively,

DTmax5MgDTlimit
a11/n1 , ~8!

DTmin5MgDTlimit
a11/n2 . ~9!

FIG. 2. Plots of the recurrence timeDT(n) against rotation
numbern for initial values ranging over 0,DT(0)<3.0, where
Tlimit52.0, a52.0, g50.02, andM515. Diagrams~a!–~c! indi-
cate, respectively, the flow in the parameter space„n,DT(n)… for
the maps of Figs. 1~a!, 1~b!, and 1~c!.
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For n151.0, n252.0, a52.0, g50.02, andM515, the
maximum and minimum values obtained from Eqs.~8! and
~9! agree with those obtained from the iteration.

Figure 3~c! shows the plot of the Liapunov expone
against high speedn2 for the same values of parameters
Fig. 3~b!. The Liapunov exponent is positive. Therefore, t
irregular behavior of recurrence time exhibits the chao
motion of the cyclic bus when the high speedn2 is higher
than the critical valuen2,c51.33.

FIG. 3. Bus behavior ofM515. ~a! Plot of the values of recur-
rence timeDT(n) against the high speedn2 from sufficiently large
rotation n5100 to n5300 when DT(0)52.0, where n151.0,
Tlimit52.0, a52.0, andg50.02. ~b! Enlargement of~a! for n2

51.5– 1.9.~c! Plot of the Liapunov exponent against high speedn2

for the same values of parameters as~b!. The Liapunov exponent is
positive.
04610
c

We study the bus behavior when the bus stopsM515
reduces toM513. Figure 4~a! shows the plot of the value
of recurrence timeDT(n) against the high speedn2 from
rotation n5100 to n5300 for M513 whenDT(0)52.0,
wheren151.0, Tlimit52.0, a52.0, andg50.02. The values
of parameters are the same as those of Fig. 3~a! except forM.
Figure 4~b! shows an enlargement of Fig. 4~a! for n2
51.5– 1.9. If the high speedn2 is less than 1.042, the recu

FIG. 4. Bus behavior ofM513. ~a! Plot of the values of recur-
rence timeDT(n) against the high speedn2 from sufficiently large
rotation n5100 to n5300 when DT(0)52.0, where n151.0,
Tlimit52.0, a52.0, andg50.02. ~b! Enlargement of~a! for n2

51.5– 1.9.~c! Plot of the Liapunov exponent against high speedn2

for the same values of parameters as~b!. The Liapunov exponent is
negative.
3-4



pe
c

d
r

ti
, t

ig

ed
gh

from
s

-
ig.

the

lue.

us,

e
ld
of

le
-

he

-

CHAOTIC AND PERIODIC MOTIONS OF A CYCLIC . . . PHYSICAL REVIEW E66, 046103 ~2002!
rence time diverges with increasing rotationn. When high
speedn2 is higher than 1.042, the recurrence time takes
riodic values. The dynamical transition from the divergen
to the periodic motion occurs at the critical pointn2,c
51.042. The critical point is obtained from Eq.~7!. The
periods range from 2 to values larger than 39. The perio
motion exhibits very complex bifurcations. The periods a
shown as 8, 25, 17, 26, 9, 28,..., 10 in Fig. 4~b!. The motion
of period 19 appears between periods 9 and 10. The mo
of period 29 appears between periods 19 and 10. Thus
motion of periodj 1k occurs between periodsj andk. Figure
4~c! shows the plot of the Liapunov exponent against h

FIG. 5. ~a! Plot of the values of recurrence timeDT(n) against
the numberM of bus stops from rotationn5100 ton5300 when
DT(0)52.0, wheren151.0, n251.0, Tlimit52.0, a52.0, andg
50.02. ~b! Enlargement of~a! betweenM512 andM514.5. ~c!
Plot of the Liapunov exponent against bus stop numberM for the
same values of parameters as~b!.
04610
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speedn2 for the same values of parameters in Fig. 4~b!. The
Liapunov exponent is negative. Therefore, it is confirm
that the motion of the cyclic bus is periodic when the hi
speedn2 is higher than the critical valuen2,c51.042.

We study the bus behavior by varying the numberM of
bus stops under such a condition that the bus speeds up
n151.0 ton252.0. Figure 5~a! shows the plot of the value
of recurrence timeDT(n) against the numberM of bus stops
from rotation n5100 to n5300 whenDT(0)52.0, where
n151.0, n251.0, Tlimit52.0, a52.0, andg50.02. Figure
5~b! shows an enlargement of Fig. 5~a! betweenM512 and
M514.5. Figure 5~c! shows the plot of the Liapunov expo
nent againstM for the same values of parameters in F
5~b!. When the number of bus stops is less thanM512.5, the
recurrence time converges to the stable fixed point of
map with the increase of rotationn. At M512.5, the dynami-
cal transition from the schedule-time phase~convergence! to
the periodic motion occurs. AtM513.62, the Liapunov ex-
ponent changes from a negative value to a positive va
The dynamical transition from the periodic motion~through
the bifurcation to various periods! to the chaotic motion oc-
curs at M513.62. Furthermore, atM516.79, the chaotic
motion changes to the divergence of recurrence time. Th
the chaotic motion of a cyclic bus appears forM
513.62– 16.79.

We study the case ofa51.0. When the value ofDTmin
given by Eq.~9! is higher thanTlimit , the map~5! and~6! has
a stable fixed point. If the drop of the map atTlimit intersects
the linear lineDT(n11)5DT(n), the map has an unstabl
fixed point atTlimit . Then, it is expected that the bus shou
behave periodically or chaotically. Figure 6 shows the plot
Eqs.~5! and ~6! for n151.0 andn252.0, whereTlimit52.0,
a51.0,g50.02, andM530. This map has only an unstab
fixed point atTlimit52.0. Figure 7 shows the plot of the re
currence timeDT(n) against rotationn for initial values
ranging over 0,DT(0)<3.0 for the map of Fig. 6. This
exhibits a periodic motion of period 2. Figure 8 shows t
plot of the values of recurrence timeDT(n) against the high
speed n2 from sufficiently large rotation,n5100 to n
5300, when DT(0)52.0, where n151.0, Tlimit52.0, a

FIG. 6. Plot of Eqs.~5! and ~6! for a51.0, wheren151.0, n2

52.0, Tlimit52.0, g50.02, andM530. This map has only an un
stable fixed point atTlimit52.0.
3-5
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TAKASHI NAGATANI PHYSICAL REVIEW E 66, 046103 ~2002!
51.0,g50.02, andM530. If the high speedn2 is less than
1.25, the recurrence time converges to the stable fixed p
and the bus moves on the scheduled time given by the st
fixed point. When the high speedn2 is higher than 1.25, the
recurrence time takes periodic values after a sufficien
large rotation. Atn2,c51.25, the dynamical transition from
the schedule-time phase~convergence! to the periodic mo-
tion occurs. The motions of periods 2, 3, 4, and 5 are
served.

For a51.0, we study the bus behavior by varying t
numberM of bus stops under such a condition that the b
speeds up fromn151.0 ton252.0. Figure 9 shows the plo
of the values of recurrence timeDT(n) against the numbe
M of bus stops from rotationn5100 to n5300 when
DT(0)52.0, wheren151.0, n251.0, Tlimit52.0, a51.0,
andg50.02. AtM1,c525, the dynamical transition from th
schedule-time phase to the periodic motion occurs with
increase of the numberM of bus stops. By furthermore in
creasingM, the periodic motion changes to the schedule-ti
phase atM2,c537.5. The transition pointM1,c is determined
by

FIG. 7. Plot of the recurrence timeDT(n) against rotationn for
initial values ranging over 0,DT(0)<3.0 for the map of Fig. 6.
This exhibits the periodic motion of period 2.

FIG. 8. Plot of the values of recurrence timeDT(n) against the
high speedn2 from sufficiently large rotationn5100 ton5300 for
a51.0 whenDT(0)52.0, wheren151.0,Tlimit52.0,g50.02, and
M530.
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We obtainM1,c525 from Eq.~10!. This value agrees with
that obtained from iteration. The transition pointM2,c is de-
termined by

Tlimit5M2,cgTlimit11/n2 . ~11!

We obtainM2,c537.5 from Eq.~11!. This value also agree
with that obtained from iteration. The chaotic motion do
not appear fora51.0 but the oscillatory motion with mul-
tiple periods occurs. Thus, the bus behavior is determined
the dynamical properties of the map~5! and ~6!.

IV. SUMMARY

We have presented the nonlinear-map model of a sin
cyclic bus to take into account the speedup in a cyclic b
system. We have studied the effect of speedup on the
namical behavior of a cyclic bus. The cyclic bus intera
with awaiting passengers at a bus stop. The bus is dela
with the increase of awaiting passengers. Then, the dela
bus speeds up to overcome the delay. As a result, the cy
bus exhibits the complex behavior and dynamical transitio
We have shown that the bus behavior depends strongly
the speedup and the number of bus stops. We have found
the cyclic bus exhibits chaotic and periodic motions. W
have also shown that the bus dynamics is determined by
properties of the fixed points of the nonlinear map. Fina
we have found that there are four distinct dynamical sta
~1! the schedule-time phase~convergence of the recurren
time!, ~2! the delay phase~divergence of the recurrent time!,
~3! the chaotic motion, and~4! the multiply periodic motions.
The transitions to the distinct dynamical states depend on
degree of speedup.

We have shown that the piecewise linear-map modela
51) does not exhibit chaotic motion, but complex oscill
tory motions with multiple periods occur.

FIG. 9. Plot of the values of recurrence timeDT(n) against the
number M of bus stops from rotationn5100 to n5300 for a
51.0 whenDT(0)52.0, wheren151.0, n251.0, Tlimit52.0, and
g50.02.
3-6
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