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Chaotic and periodic motions of a cyclic bus induced by speedup
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We study the effect of speedup on the dynamical behavior of a single cyclic bus in a bus system with many
bus stops. We present a nonlinear-map model of a cyclic bus to take into account the speedup. When the cyclic
bus is delayed, the bus speeds up to retrieve the delay. It is found that the cyclic bus exhibits chaotic motion
with increasing speedup. The chaotic motion depends on both speedup and the number of bus stops. Also, it is
shown that the dynamical transition between the chaotic and periodic motions occurs with the increase of bus
stops. The dependence of the recurrence {iome period and Liapunov exponent on both speedup and the
number of bus stops is calculated for distinct dynamic states. It is shown that the speedup has a significant
effect on the bus motion. For a piecewise linear-map model, the cyclic bus does not exhibit the chaotic motion
but a complex oscillatory motion with multiple periods occurs.
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[. INTRODUCTION We present the nonlinear-map model to describe the bus dy-
namics. We investigate the dynamics of the nonlinear map.
Recently, transportation problems have attracted much atve show that the dynamical transitions to complex motion
tention in the field of nonequilibrium statistical mechanicsoccur by changing the speedup and the number of bus stops.
[1-4]. The jamming transitions of traffic flow have been We calculate the Liapunov exponent for various dynamical
investigated by using various modé&-15]. The dynamical states. We show that chaotic motion occurs with the increase
phase transitions are very much similar to the conventiona®f speedup.
phase transitions and critical phenomena even if the system

is far from equilibrium[9]. Il. MODEL
Very recently, bus route models with multiple buses have ) )
been formulated by models similar to the traffic flgh6— We present the model of a cyclic bus on a circular route.

21]. It has been found that the bunching transition betweer here areM bus stops on the circular route. A cyclic bus
an inhomogeneous jammed phase and a homogeneous ph&&its at bus stom=1 and moves around the route. The bus
occurs with increasing buses. The bunching transition is defi@lways stops at all the bus stops. If the recurrence tone
nitely different from the jamming transitions of traffic flow. Period is less than the prescribed limit, the bus moves with
In the system of a single cyclic bus on a circular route@ regular speed. When the recurrence time is larger than the
with many bus stops, a bus interacts with passengers waitingfescribed limit, the bus speeds up and moves with higher
at bus stop$22]. With the increase of awaiting passengers atspeed. The model is defined on a finite one-dimensional lat-
bus stops, a bus slows down, since it takes more time foficeé with a periodic boundary condition. Each lattice site is
awaiting passengers to board the bus. Then, the recurrenfeled by a numbem running from 1 toM. A site represents
time (one periodl converges or diverges with the increase ofa bus stop. The distance between a bus stepl and its
rotations. The cyclic bus exhibits a dynamical transition be-next bus stopn is defined byl ,,. The average speed of the
tween the delay and schedule-time phases. The interactidi!s between a bus stop and its next bus stop at rotatien
between buses does not exist in the single-cyclic-bus protbdefined byV(m,n). The arrival timet(m,n+1) at bus stop
lem but the dynamical phase transition occurs. The delayn at the fi+1)th rotation is given by the summation of the
transition depends on the number of bus stops, the bus speedppping time(for new passengers to board the joaad the
and the number of awaiting passengers. moving time between a bus stop and the next bus stop over
If the cyclic bus slows down, the bus will speed up in the bus stop$1. One obtains the following equation:
order to operate it on a schedule time. The operator may be
able to overcome the bus delay by the speeding up. It is little m—1 m—1 .
known how the speedup affects the bus behavior. The bu _ [
behavior is governed by the dynamics of nonlinear f2g). P(m,n+ D=t(mn)+ 21 FAtdn+1)+ 21 V(l,n+1)
The delay transition is determined by the properties of the " "
attractors. The bus exhibits such complex behaviors as cha- L
otic and multiple periodic motions by the variation of the +,:2m F(At(l'”)H,:Em V(l,n)’ @
speedup and the number of bus stops.
In this paper, we study the dynamical behavior of the
cyclic bus induced by the speedup when the bus slows downvhere the functiorf is the stopping time at a bus stop for
new passengers to board the bus and the recurrence time
At(m,n) at bus stopm at rotationn is defined byAt(m,n)
*Email address: tmtnaga@ipc.shizuoka.ac.jp =t(m,n)—t(m,n—1).
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The awaiting passengers at a bus stop increase with the
recurrence time. The number of awaiting passengers at bus
stop m at thenth rotation is proportional to the recurrence
time At(m,n). w is the rate of passengers arriving at the bus
stop, souAt(m,n) is the number of passengers that have
arrived since the bus left the stop. The paramatés the
time it takes one passenger to board the bus, and so
xpAt(m,n) is the amount of time needed to board all the
passengers. The boarding time increases with the increase of
awaiting passengers.

However, when the awaiting passengers at a bus stop in-
crease, the passengers form a queue. Then, in addition to
boarding timexuAt(m,n), one should take into account the
time it takes one passenger to move from a position in the
gueue to the entrance of the bus. The moving time is given
by x/vq, wherex is the position of passenger in the queue
andv, is the mean velocity of passenger. If the length of the
queue i 4, the moving time is given byé/ZVq. Since the 279
length of the queue is proportional to the number of awaiting gL \
passengers, the moving time is proportional to the square of
the recurrence time[At(m,n)]%. Therefore, the stopping
time for new passengers to board the bus is given by

AT(n+1)

AT(n+1)

F(At(m,n))= K,uAt(m,n)+[§,uAt(m,n)]2/2vq, where ¢ 2

is the space between passengers in the queue.
Generally, awaiting passengers at a bus stop interact each
other and the human behavior will become more complex

— a=2.0

¥=0.02
0.613 M=15
v=2.0

than the above. We assume that the boarding time is propor-
tional to the power of the number of awaiting passengers:

F(At(m,n))=y,At(m,n)*, ) 0 1

where vy, is the coefficient of proportionality and<la<?2.

On dividing time by the characteristic time/VV,, one ob-
tainsM simultaneous equations for the dimensionless recur-
rence time:

m-1 M
AT(mn+1)= > yAT(l,n+1)%+ >, yAT(I,n)“ 2 220
=1 I=1

AT@n+1)

~—1.70
Vo - «=2.0
+ W’ (3) 1 2.0 ¥=0.02
M=15

where AT(m,n)=VoAt(m,n)/L, y=7yo(Vo/L)}™ ¢, route

lengthL=3M .L,, andV(n)=(=",V(I,n))/M is the aver- ol 14 L

age velocity over a cycle. 0 2
We approximate Eq(3) by a simple nonlinear map. The AT@) ©

recurrence timeAT(m,n) at bus stopm is replaced by an

effective (or mean recurrence time\T(n). The M simulta- FIG. 1. Plots of map(4) for (@ »v=V(n)/V,=1.0 and(b) v

neous equations reduce to a nonlinear equation. One obtaifsV(n)/Vo=20, wherea=2.0, y=0.02, andM =15. Map(a) has

the following nonlinear map of a single variable: no fixed points. Mapgb) has two fixed points: 0.613 and 2.72)
Plot of Egs.(5) and (6) for »;,=1.0 and v,=2.0, where T

(4) =2.0. The map has two unstable fixed points: 2.0 and 2.72.

AT(n+1)=MyAT(n)*+V,y/V(n).
the fixed point 2.72 is unstable. The basin of attraction for
the stable fixed point is given h{T(0)<2.72.

If the recurrence time is larger than the prescribed limit

Map (4) presents a good approximation for E@) [22].
Figure 1 shows the plots of ma@) for (a) v=V(n)/V,
=1.0 and(b) v=V(n)/V,=2.0, wherea=2.0,y=0.02,and T}, the bus moves with the high speegl. Otherwise, the
M=15. Map(a) has no fixed points. Mafb) has two fixed bus moves with the low speeg, (v;<v,). The following
points: 0.613 and 2.72. The fixed point 0.613 is stable angnap is obtained:
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AT(N+1)=MyAT(n)*+ vy when AT(N)< Ty,
©)

AT(n+1)=MyAT(n)*“+1/v, when AT(N)>Tjimit -
(6)

Figure Xc) shows the plot of Eqs(5) and (6) for »;=1.0

and v,=2.0, whereT;,;=2.0, «a=2.0, y=0.02, andM

=15. The map has two unstable fixed points: 2.0 and 2.72. A

The basin of attraction for the fixed point 2.0 agrees nearly ’ %
f

with that of map(b) but the dynamics is definitely different

from map(b). It will be expected that the bus behavior ex- .

hibits chaotic or periodic motions near the fixed point 2.0. 0.0 | L1 L
The case ofa=1.0 presents the piecewise linear map 0 10 20

[23]. First, we consider the piecewise nonlinear mapaof (2)

=2.0, and then the piecewise linear mapact 1.0.

Ill. CHAOTIC AND PERIODIC MOTIONS «=2.0

] ¥=0.02
We study the bus behavior by iterations of E¢s. and M=15

(6). Figure 2 shows the plots of the recurrence titg(n) 9.0 v=2.0
against rotation numben for initial values ranging over 0
<AT(0)=<3.0, whereT;;;=2.0, «=2.0, y=0.02, andM AT(@) -
=15. The diagram&)—(c) indicate, respectively, the flow in
the parameter spad@,AT(n)) for the maps of Figs. (d), 1.0 4 0.613
1(b), and Xc). For the map of Fig. (B), the recurrence time \
AT(n) diverges with the increase of rotatianeven if the 4
bus starts from any initial value. The bus delays more and
more. For the map of Fig.(), when the initial valu&A T(0) 0.0 s S S S RN S E
is less than the unstable fixed point, the recurrence time n
AT(n) converges to the stable fixed point 0.613 with the (b)
increase of rotatiom. Otherwise, the recurrence time di-

verges. ForAT(0)<2.72, the bus moves with a constant 3.0
period, i.e., on the scheduled time. oF (0)>2.72, the bus

delays more and more. Therefore, the dynamical transition
between the delay and schedule-time phases occurs at

AT(0)=2.72. For the map of Fig.(&), the recurrence time 2.0
exhibits the irregular behavior or diverges with the increase
of rotationn. ATm)

We calculate the variation of the recurrence time by the X7
increase of rotation to study the dynamical transitions to the 1.0

irregular motions. Figure(8) shows the plot of the values of

recurrence time\T(n) against the high speed, from suf-

ficiently large rotation,n=100 to n=300, whenAT(0)

=2.0, wherev,=1.0, Tjnt=2.0, «=2.0, y=0.02, andM 0.0

=15. Figure 8b) shows an enlargement Fig(aB for v,

=1.5-1.9. If the high speed, is less than 1.33, the recur-

rence time diverges with increasing rotationWhen high FIG. 2. Plots of the recurrence tim&T(n) against rotation

speedv, is higher than 1.33, the recurrence time takes ir-numbern for initial values ranging over @AT(0)<3.0, where

regular values. The dynamical transition from the divergencea,,;=2.0, a=2.0, y=0.02, andM = 15. Diagrams(a)—(c) indi-

to the irregular motion occurs at the critical poimt,  cate, respectively, the flow in the parameter spacéT(n)) for

=1.33. The critical point is given by such a point that thethe maps of Figs. (&), 1(b), and Xc).

value of recurrence timé6) at AT(n)=Tn:=2.0 for the

high speed equal§;,,;=2.0[see Fig. 1c)]: the iteration. The maximum and minimum valuk¥,,,,, and
AT i Of the recurrence time are given, respectively,

ATjimit=M YA T jiie“ + 1/v5. (7)
AT ma= M yAT jjmic* + vy, (8

From Eq.(7), one obtainsv,,=1.33 for «a=2.0, y=0.02,
andM =15. This value is consistent with that obtained from AT in=M YA T i+ Lvs. (9
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FIG. 3. Bus behavior oM =15. (a) Plot of the values of recur-
rence timeAT(n) against the high speed, from sufficiently large
rotation n=100 to n=300 when AT(0)=2.0, wherev;=1.0,
Timit=2.0, «=2.0, and y=0.02. (b) Enlargement of(a) for v,
=1.5-1.9(c) Plot of the Liapunov exponent against high speegd
for the same values of parameters(las The Liapunov exponent is
positive.

FIG. 4. Bus behavior oM =13. (a) Plot of the values of recur-
rence timeAT(n) against the high speed, from sufficiently large
rotation =100 to n=300 when AT(0)=2.0, where »,=1.0,
Timii=2.0, «=2.0, and y=0.02. (b) Enlargement of(a) for v,
=1.5-1.9.(c) Plot of the Liapunov exponent against high spegd
for the same values of parameterglas The Liapunov exponent is
negative.

For v;=1.0, v,=2.0, «=2.0, y=0.02, andM =15, the _
maximum and minimum values obtained from E(®. and We study the bus behavior when the bus stdps 15
(9) agree with those obtained from the iteration. reduces toM = 13. Figure 4a) shows the plot of the values

Figure 3c) shows the plot of the Liapunov exponent of recurrence timeAT(n) against the high speed, from
against high speed, for the same values of parameters in rotation n=100 to n=300 for M=13 whenAT(0)=2.0,
Fig. 3(b). The Liapunov exponent is positive. Therefore, thewherev,;=1.0, Tj,;=2.0, «=2.0, andy=0.02. The values
irregular behavior of recurrence time exhibits the chaoticof parameters are the same as those of Ri.€xcept forM.
motion of the cyclic bus when the high speeglis higher  Figure 4b) shows an enlargement of Fig.(a} for v,
than the critical values, .= 1.33. =1.5-1.9. If the high speed, is less than 1.042, the recur-
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1 M=30
0 1 | i 1
10 12 14 16 18 20 -
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2.5 AT()
- FIG. 6. Plot of Eqs(5) and(6) for «=1.0, wherev,=1.0, v,
=2.0, Tjimt=2.0, y=0.02, andM =30. This map has only an un-
2.0 stable fixed point aT ;= 2.0.
AT@) ~ speedv, for the same values of parameters in Fig)4The
15 Liapunov exponent is negative. Therefore, it is confirmed
that the motion of the cyclic bus is periodic when the high
. speedy, is higher than the critical value, ,=1.042.
We study the bus behavior by varying the numbgiof
1.0 12 125 13 135 14 145 bus stops under such a condition that the bus speeds up from
' ' ' v,=1.0 tov,=2.0. Figure %a) shows the plot of the values
® of recurrence tim@& T(n) against the numbewvl of bus stops
0.10 from rotationn=100 to n=300 whenAT(0)=2.0, where
r1=1.0, v,=1.0, Tjimt=2.0, «a=2.0, andy=0.02. Figure
0.05 5(b) shows an enlargement of Fig(&h betweenM =12 and
M= 14.5. Figure ¥c) shows the plot of the Liapunov expo-
0.00 nent againstM for the same values of parameters in Fig.
& «=2.0 5(b). When the number of bus stops is less thas 12.5, the
- 0.08+ =002 recurrence time converges to the stable fixed point of the
- 0.104 v=1.0 map with the increase of rotation At M =12.5, the dynami-
V2.0 cal transition from the schedule-time phdsenvergenceto
-0.15- the periodic motion occurs. Al =13.62, the Liapunov ex-
! ! l ! ponent changes from a negative value to a positive value.
12 12.5 13 13.5 14 14.5

The dynamical transition from the periodic moti¢hrough
() the bifurcation to various periof$o the chaotic motion oc-
curs atM=13.62. Furthermore, at1=16.79, the chaotic
motion changes to the divergence of recurrence time. Thus,
the chaotic motion of a cyclic bus appears fdd
=13.62-16.79.

We study the case ak=1.0. When the value oAT,;,
given by Eq.(9) is higher tharil;,; , the map(5) and(6) has
a stable fixed point. If the drop of the mapT},; intersects
rence time diverges with increasing rotatiaonWhen high  the linear lineAT(n+1)=AT(n), the map has an unstable
speedy, is higher than 1.042, the recurrence time takes pefixed point atT,; . Then, it is expected that the bus should
riodic values. The dynamical transition from the divergencebehave periodically or chaotically. Figure 6 shows the plot of
to the periodic motion occurs at the critical poim.  Egs.(5) and(6) for »;=1.0 andv,=2.0, whereT,;=2.0,
=1.042. The critical point is obtained from E¢7). The «=1.0,y=0.02, andV =30. This map has only an unstable
periods range from 2 to values larger than 39. The periodiixed point atT;,;=2.0. Figure 7 shows the plot of the re-
motion exhibits very complex bifurcations. The periods arecurrence timeAT(n) against rotationn for initial values
shown as 8, 25, 17, 26, 9, 28,..., 10 in Figh}4 The motion  ranging over B<AT(0)=<3.0 for the map of Fig. 6. This
of period 19 appears between periods 9 and 10. The motioexhibits a periodic motion of period 2. Figure 8 shows the
of period 29 appears between periods 19 and 10. Thus, th@ot of the values of recurrence timT (n) against the high
motion of periodj + k occurs between perioggndk. Figure  speed v, from sufficiently large rotation,n=2100 to n
4(c) shows the plot of the Liapunov exponent against high=300, when AT(0)=2.0, where v;=1.0, Tjmit=2.0, @

FIG. 5. (a) Plot of the values of recurrence tindel'(n) against
the numbemM of bus stops from rotation=100 ton=300 when
AT(0)=2.0, wherev;=1.0, v,=1.0, T;1=2.0, «=2.0, andy
=0.02. (b) Enlargement ofl@) betweenM =12 andM =14.5. (c)
Plot of the Liapunov exponent against bus stop nuniMefor the
same values of parameters (&$.
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FIG. 7. Plot of the recurrence timeT(n) against rotatiom for
initial values ranging over €AT(0)=<3.0 for the map of Fig. 6.
This exhibits the periodic motion of period 2.

=1.0, y=0.02, andM = 30. If the high speed, is less than
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0 l ! l l
20 25 30 35 40 45

M

FIG. 9. Plot of the values of recurrence timd (n) against the
numberM of bus stops from rotatiom=100 to n=300 for «
=1.0 whenAT(0)=2.0, wherev,=1.0, v,=1.0, T;,s=2.0, and
y=0.02.

Tiimit=M 1Y Tiimit + 1/v1 . (10

1.25, the recurrence time converges to the stable fixed point

and the bus moves on the scheduled time given by the stable
fixed point. When the high speed is higher than 1.25, the
recurrence time takes periodic values after a sufficiently,

large rotation. Atv,.=1.25, the dynamical transition from
the schedule-time phageonvergenceto the periodic mo-

We obtainM ; .= 25 from Eq.(10). This value agrees with
at obtained from iteration. The transition poMt, . is de-
rmined by

tion occurs. The motions of periods 2, 3, 4, and 5 are ob- Tiimit=Mo ¥ Timit + L/v,. (11

served.

For a=1.0, we study the bus behavior by varying the
numberM of bus stops under such a condition that the bu

speeds up fromv;=1.0 tov,=2.0. Figure 9 shows the plot
of the values of recurrence timeT(n) against the number
M of bus stops from rotatiom=100 to n=300 when
AT(0)=2.0, wherev;=1.0, v,=1.0, T;jnt=2.0, a=1.0,

andy=0.02. AtM, =25, the dynamical transition from the

S

We obtainM,.=37.5 from Eq.(11). This value also agrees
with that obtained from iteration. The chaotic motion does
not appear fore=1.0 but the oscillatory motion with mul-
tiple periods occurs. Thus, the bus behavior is determined by
the dynamical properties of the m&p) and (6).

schedule-time phase to the periodic motion occurs with the IV. SUMMARY

increase of the numbev of bus stops. By furthermore in-

creasingM, the periodic motion changes to the schedule-time We have presented the nonlinear-map model of a single

phase aM,.=37.5. The transition poin¥, . is determined
by

3.0

2.0+ \5\\\\:‘\“&\

I

ATm) -
1.25
a=2.0
1.0 ¥=0.02
M=30
B v1=1.0
0 | | |
1.0 1.5 2.0 2.5 3.0

i
FIG. 8. Plot of the values of recurrence timd (n) against the
high speedv, from sufficiently large rotatiom= 100 ton=300 for
a=1.0 whenAT(0)=2.0, wherev,;=1.0, T}j,,y= 2.0, y=0.02, and
M=30.

cyclic bus to take into account the speedup in a cyclic bus
system. We have studied the effect of speedup on the dy-
namical behavior of a cyclic bus. The cyclic bus interacts
with awaiting passengers at a bus stop. The bus is delayed
with the increase of awaiting passengers. Then, the delayed
bus speeds up to overcome the delay. As a result, the cyclic
bus exhibits the complex behavior and dynamical transitions.
We have shown that the bus behavior depends strongly on
the speedup and the number of bus stops. We have found that
the cyclic bus exhibits chaotic and periodic motions. We
have also shown that the bus dynamics is determined by the
properties of the fixed points of the nonlinear map. Finally,
we have found that there are four distinct dynamical states:
(1) the schedule-time phageonvergence of the recurrent
time), (2) the delay phasé&divergence of the recurrent tire
(3) the chaotic motion, ant) the multiply periodic motions.
The transitions to the distinct dynamical states depend on the
degree of speedup.

We have shown that the piecewise linear-map model (
=1) does not exhibit chaotic motion, but complex oscilla-
tory motions with multiple periods occur.
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